ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШКОЛА № 142 ГОРОДСКОГО ОКРУГА ДОНЕЦК» ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ

 ПРИНЯТО
 СОГЛАСОВАНО
 УТВЕРЖДЕНО

 решением педагогического совета
 Заместитель директора
 Директор ГБОУ «Школа

 Протокол от 26. СД:2024 г. от

РАБОЧАЯ ПРОГРАММА

учебного предмета «ХИМИЯ 10-11 КЛАССЫ»

Уровень среднего общего образования

Углубленный уровень

Составитель программы: учитель химии и биологии Каранчук Елена Александровна

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по химии на уровне среднего общего образования разработана на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», требований к результатам освоения федеральной образовательной программы среднего общего образования(ФОП СОО), представленных в Федеральном государственном образовательном стандарте СОО, с учётом Концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, реализующих основные образовательные программы, и основных положений «Стратегии развития воспитания в Российской Федерации на период до 2025 года» (Распоряжение Правительства РФ от 29.05. 2015 № 996 - р.).

Химия на уровне углублённого изучения занимает важное место в системе естественно-научного образования учащихся 10–11 классов. Изучение предмета, реализуемое в условиях дифференцированного, профильного обучения, призвано обеспечить общеобразовательную и общекультурную подготовку выпускников школы, необходимую для адаптации их к быстро меняющимся условиям жизни в социуме, а также для продолжения обучения в организациях профессионального образования, в которых химия является одной из приоритетных дисциплин.

В программе по химии назначение предмета «Химия» получает подробную интерпретацию в соответствии с основополагающими положениями ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников. Свидетельством тому являются следующие выполняемые программой по химии функции:

- информационно-методическая, реализация которой обеспечивает получение представления о целях, содержании, общей стратегии обучения, воспитания и развития обучающихся средствами предмета, изучаемого в рамках конкретного профиля;
- организационно-планирующая, которая предусматривает определение: принципов структурирования и последовательности изучения учебного материала, количественных и качественных его характеристик; подходов к формированию содержательной основы контроля и оценки образовательных достижений обучающихся в рамках итоговой аттестации в форме единого государственного экзамена по химии.

Программа для углублённого изучения химии:

- устанавливает инвариантное предметное содержание, обязательное для изучения в рамках отдельных профилей, предусматривает распределение и структурирование его по классам, основным содержательным линиям/разделам курса;
- даёт примерное распределение учебного времени, рекомендуемого для изучения отдельных тем;
- предлагает примерную последовательность изучения учебного материала с учётом логики построения курса, внутрипредметных и межпредметных связей;
- даёт методическую интерпретацию целей и задач изучения предмета на углублённом уровне с учётом современных приоритетов в системе среднего общего образования, содержательной характеристики планируемых результатов освоения основной образовательной программы среднего общего образования (личностных, метапредметных, предметных), а также с учётом основных видов учебно-познавательных действий обучающегося по освоению содержания предмета.

По всем названным позициям в программе по химии предусмотрена преемственность с обучением химии на уровне основного общего образования. За пределами установленной программой по химии обязательной (инвариантной) составляющей содержания учебного предмета «Химия» остаётся возможность выбора его вариативной составляющей, которая должна определяться в соответствии с направлением конкретного профиля обучения.

В соответствии с концептуальными положениями ФГОС СОО о назначении предметов базового и углублённого уровней в системе дифференцированного обучения на уровне среднего общего образования химия на уровне углублённого изучения направлен на реализацию преемственности с последующим этапом получения химического образования в рамках изучения специальных естественно-научных и химических дисциплин в вузах и организациях среднего профессионального образования. В этой связи изучение предмета «Химия» ориентировано преимущественно на расширение и углубление теоретической и практической подготовки обучающихся, выбравших определённый профиль обучения, в том числе с перспективой последующего получения химического образования в организациях профессионального образования. Наряду с этим, в свете требований ФГОС СОО к планируемым результатам освоения федеральной образовательной программы среднего общего образования изучение предмета «Химия» ориентировано также на решение задач воспитания и социального развития обучающихся, на формирование у них общеинтеллектуальных умений, умений рационализации учебного обобщённых способов деятельности, имеющих междисциплинарный, надпредметный характер.

Составляющими предмета «Химия» на уровне углублённого изучения являются углублённые курсы — «Органическая химия» и «Общая и неорганическая химия». При определении подходов к отбору и структурной организации содержания этих курсов в программе по химии за основу приняты положения ФГОС СОО о различиях базового и углублённого уровней изучения предмета.

Основу содержания курсов «Органическая химия» и «Общая и неорганическая химия» составляет совокупность предметных знаний и умений, относящихся к базовому уровню изучения предмета. Эта система знаний получает определённое теоретическое освоить существенно дополнение, позволяющее осознанно больший фактологического материала. Так, на углублённом уровне изучения предмета обеспечена возможность значительного увеличения объёма знаний о химических элементах и свойствах их соединений на основе расширения и углубления представлений о строении вещества, химической связи и закономерностях протекания реакций, рассматриваемых с точки зрения химической кинетики и термодинамики. Изучение периодического закона и Периодической системы химических элементов базируется на современных квантовомеханических представлениях о строении атома. Химическая связь объясняется с точки зрения энергетических изменений при её образовании и разрушении, а также с точки зрения механизмов её образования. Изучение типов реакций дополняется формированием представлений об электрохимических процессах и электролизе расплавов и растворов веществ. В курсе органической химии при рассмотрении реакционной способности соединений уделяется особое внимание вопросам об электронных эффектах, о взаимном влиянии атомов в молекулах и механизмах реакций.

Особое значение имеет то, что на содержание курсов химии углублённого уровня изучения для классов определённого профиля (главным образом на их структуру и характер дополнений к общей системе предметных знаний) оказывают влияние смежные предметы. Так, например, в содержании предмета для классов химико-физического профиля большое значение будут иметь элементы учебного материала по общей химии. При изучении предмета в данном случае акцент будет сделан на общность методов познания, общность законов и теорий в химии и в физике: атомно-молекулярная теория

(молекулярная теория в физике), законы сохранения массы и энергии, законы термодинамики, электролиза, представления о строении веществ и другое.

В то же время в содержании предмета для классов химико-биологического профиля больший удельный вес будет иметь органическая химия. В этом случае предоставляется возможность для более обстоятельного рассмотрения химической организации клетки как биологической системы, в состав которой входят, к примеру, такие структурные компоненты, как липиды, белки, углеводы, нуклеиновые кислоты и другие. При этом знания о составе и свойствах представителей основных классов органических веществ служат основой для изучения сущности процессов фотосинтеза, дыхания, пищеварения.

В плане формирования основ научного мировоззрения, освоения общенаучных методов познания и опыта практического применения научных знаний изучение предмета «Химия» на углублённом уровне основано на межпредметных связях с учебными предметами, входящими в состав предметных областей «Естественно-научные предметы», «Математика и информатика» и «Русский язык и литература».

При изучении учебного предмета «Химия» на углублённом уровне также, как на уровне основного и среднего общего образования (на базовом уровне), задачей первостепенной значимости является формирование основ науки химии как области современного естествознания, практической деятельности человека и одного из компонентов мировой культуры. Решение этой задачи на углублённом уровне изучения предмета предполагает реализацию таких целей, как:

- формирование представлений: о материальном единстве мира, закономерностях и познаваемости явлений природы, о месте химии в системе естественных наук и её ведущей роли в обеспечении устойчивого развития человечества: в решении проблем экологической, энергетической и пищевой безопасности, в развитии медицины, создании новых материалов, новых источников энергии, в обеспечении рационального природопользования, в формировании мировоззрения и общей культуры человека, а также экологически обоснованного отношения к своему здоровью и природной среде;
- освоение системы знаний, лежащих в основе химической составляющей естественно-научной картины мира: фундаментальных понятий, законов и теорий химии, современных представлений о строении вещества на разных уровнях атомном, ионно-молекулярном, надмолекулярном, о термодинамических и кинетических закономерностях протекания химических реакций, о химическом равновесии, растворах и дисперсных системах, об общих научных принципах химического производства;
- формирование у обучающихся осознанного понимания востребованности системных химических знаний для объяснения ключевых идей и проблем современной химии, для объяснения и прогнозирования явлений, имеющих естественно-научную природу; грамотного решения проблем, связанных с химией, прогнозирования, анализа и оценки с позиций экологической безопасности последствий бытовой и производственной деятельности человека, связанной с химическим производством, использованием и переработкой веществ;
- углубление представлений о научных методах познания, необходимых для приобретения умений ориентироваться в мире веществ и объяснения химических явлений, имеющих место в природе, в практической деятельности и повседневной жизни.

В плане реализации первоочередных воспитательных и развивающих функций целостной системы среднего общего образования при изучении предмета «Химия» на углублённом уровне особую актуальность приобретают такие цели и задачи, как:

- воспитание убеждённости в познаваемости явлений природы, уважения к процессу творчества в области теоретических и прикладных исследований в химии, формирование мировоззрения, соответствующего современному уровню развития науки;
- развитие мотивации к обучению и познанию, способностей к самоконтролю и самовоспитанию на основе усвоения общечеловеческих ценностей;
- развитие познавательных интересов, интеллектуальных и творческих способностей обучающихся, формирование у них сознательного отношения к самообразованию и непрерывному образованию как условию успешной профессиональной и общественной деятельности, ответственного отношения к своему здоровью и потребности в здоровом образе жизни;
- формирование умений и навыков разумного природопользования, развитие экологической культуры, приобретение опыта общественно-полезной экологической деятельности.

Общее число часов, предусмотренных для изучения химии на углубленном уровне среднего общего образования, составляет 201 час: в 10 классе — 102 часа (3 часа в неделю), в 11 классе — 99 часов (3 часа в неделю).

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

В соответствии с системно-деятельностным подходом в структуре личностных результатов освоения предмета «Химия» на уровне среднего общего образования выделены следующие составляющие: осознание обучающимися российской гражданской идентичности; готовность к саморазвитию, самостоятельности и самоопределению; наличие мотивации к обучению; готовность и способность обучающихся руководствоваться принятыми в обществе правилами и нормами поведения; наличие правосознания, экологической культуры; способность ставить цели и строить жизненные планы.

Личностные результаты освоения предмета «Химия» отражают сформированность опыта познавательной и практической деятельности обучающихся в процессе реализации образовательной деятельности.

Личностные результаты освоения предмета «Химия» отражают сформированность опыта познавательной и практической деятельности обучающихся в процессе реализации образовательной деятельности, в том числе в части:

1) гражданского воспитания:

осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;

представления о социальных нормах и правилах межличностных отношений в коллективе;

готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;

способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;

2) патриотического воспитания:

ценностного отношения к историческому и научному наследию отечественной химии;

уважения к процессу творчества в области теории и практического приложения химии, осознания того, что данные науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда учёных и практиков;

интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;

3) духовно-нравственного воспитания:

нравственного сознания, этического поведения;

способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

готовности оценивать своё поведение и поступки своих товарищей с позиций нравственных и правовых норм и с учётом осознания последствий поступков;

4) формирования культуры здоровья:

понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;

соблюдения правил безопасного обращения с веществами в быту, повседневной жизни, в трудовой деятельности;

понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

5) трудового воспитания:

коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);

интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;

уважения к труду, людям труда и результатам трудовой деятельности;

готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учётом личностных интересов, способностей к химии, интересов и потребностей общества;

6) экологического воспитания:

экологически целесообразного отношения к природе как источнику существования жизни на Земле;

понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;

осознания необходимости использования достижений химии для решения вопросов рационального природопользования;

активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

7) ценности научного познания:

мировоззрения, соответствующего современному уровню развития науки и общественной практики;

понимания специфики химии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убеждённости в особой значимости химии для современной цивилизации: в её гуманистической направленности и важной роли в создании новой базы материальной культуры, в решении глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена обшества:

естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;

интереса к познанию, исследовательской деятельности;

готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;

интереса к особенностям труда в различных сферах профессиональной деятельности.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы по химии на уровне среднего общего образования включают:

значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);

универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;

способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Познавательные универсальные учебные действия

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать при освоении знаний приёмы логического мышления: выделять характерные признаки понятий и устанавливать их взаимосвязь, использовать соответствующие понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций; устанавливать причинно-следственные связи между изучаемыми явлениями;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять в процессе познания используемые в химии символические (знаковые) модели, преобразовывать модельные представления — химический знак (символ) элемента, химическая формула, уравнение химической реакции — при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.

2) базовые исследовательские действия:

владеть основами методов научного познания веществ и химических реакций;

формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;

владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно

прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчёт о проделанной работе;

приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

3) работа с информацией:

ориентироваться в различных источниках информации (научно-популярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;

формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определённого типа;

приобретать опыт использования информационно-коммуникативных технологий и различных поисковых систем;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);

использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;

использовать знаково-символические средства наглядности.

Коммуникативные универсальные учебные действия:

задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;

выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта, и формулировать выводы по результатам проведённых исследований путём согласования позиций в ходе обсуждения и обмена мнениями.

Регулятивные универсальные учебные действия:

самостоятельно планировать и осуществлять свою познавательную деятельность, определяя её цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учётом получения новых знаний о веществах и химических реакциях;

осуществлять самоконтроль деятельности на основе самоанализа и самооценки.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Предметные результаты освоения программы по химии на углублённом уровне на уровне среднего общего образования включают специфические для учебного предмета «Химия» научные знания, умения и способы действий по освоению, интерпретации и

преобразованию знаний, виды деятельности по получению нового знания и применению знаний в различных учебных ситуациях, а также в реальных жизненных ситуациях, связанных с химией. В программе по химии предметные результаты представлены по годам изучения.

11 КЛАСС

Предметные результаты освоения курса «Общая и неорганическая химия» отражают:

сформированность представлений: о материальном единстве мира, закономерностях и познаваемости явлений природы, о месте и значении химии в системе естественных наук и её роли в обеспечении устойчивого развития, в решении проблем экологической, энергетической и пищевой безопасности, в развитии медицины, создании новых материалов, новых источников энергии, в обеспечении рационального природопользования, в формировании мировоззрения и общей культуры человека, а также экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает: основополагающие понятия – химический элемент, атом, ядро атома, изотопы, электронная оболочка атома, s-, p-, d-атомные орбитали, основное и возбуждённое состояния атома, гибридизация атомных орбиталей, ион, молекула, валентность, электроотрицательность, степень окисления, химическая связь (ковалентная, ионная, металлическая, водородная), кристаллическая решётка, химическая реакция, раствор, электролиты, неэлектролиты, электролитическая диссоциация, степень диссоциации, водородный окислитель, восстановитель, тепловой эффект химической реакции, скорость химической реакции, химическое равновесие; теории и законы (теория электролитической диссоциации, периодический закон Д.И. Менделеева, закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях, закон постоянства состава веществ, закон действующих масс), закономерности, символический язык химии, мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений; современные представления о строении вещества на атомном, ионно-молекулярном и надмолекулярном уровнях; представления о механизмах реакций, термодинамических и кинетических закономерностях химических химическом равновесии, растворах протекания, дисперсных И фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических веществ в быту и практической деятельности человека, общих научных принципах химического производства;

сформированность умений: выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании неорганических веществ и их превращений;

сформированность умения использовать химическую символику для составления формул веществ и уравнений химических реакций, систематическую номенклатуру (IUPAC) и тривиальные названия отдельных веществ;

сформированность умения определять валентность и степень окисления химических элементов в соединениях, вид химической связи (ковалентная, ионная, металлическая, водородная), тип кристаллической решётки конкретного вещества;

сформированность умения объяснять зависимость свойств веществ от вида химической связи и типа кристаллической решётки, обменный и донорно-акцепторный механизмы образования ковалентной связи;

сформированность умений: классифицировать: неорганические вещества по их составу, химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов,

обратимости, участию катализатора и другие); самостоятельно выбирать основания и критерии для классификации изучаемых веществ и химических реакций;

сформированность умения раскрывать смысл периодического закона Д. И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции;

сформированность умений: характеризовать электронное строение атомов и ионов химических элементов первого—четвёртого периодов Периодической системы Д.И. Менделеева, используя понятия «энергетические уровни», «энергетические подуровни», «s-, p-, d-атомные орбитали», «основное и возбуждённое энергетические состояния атома»; объяснять закономерности изменения свойств химических элементов и их соединений по периодам и группам Периодической системы Д. И. Менделеева, валентные возможности атомов элементов на основе строения их электронных оболочек;

сформированность умений: характеризовать (описывать) общие химические свойства веществ различных классов, подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций;

сформированность умения раскрывать сущность: окислительно-восстановительных реакций посредством составления электронного баланса этих реакций; реакций ионного обмена путём составления их полных и сокращённых ионных уравнений; реакций гидролиза; реакций комплексообразования (на примере гидроксокомплексов цинка и алюминия);

сформированность умения объяснять закономерности протекания химических реакций с учётом их энергетических характеристик, характер изменения скорости химической реакции в зависимости от различных факторов, а также характер смещения химического равновесия под влиянием внешних воздействий (принцип Ле Шателье);

сформированность умения характеризовать химические реакции, лежащие в основе промышленного получения серной кислоты, аммиака, общие научные принципы химических производств; целесообразность применения неорганических веществ в промышленности и в быту с точки зрения соотношения риск-польза;

сформированность владения системой знаний о методах научного познания явлений природы — наблюдение, измерение, моделирование, эксперимент (реальный и мысленный), используемых в естественных науках, умения применять эти знания при экспериментальном исследовании веществ и для объяснения химических явлений, имеющих место в природе, практической деятельности человека и в повседневной жизни;

сформированность умения выявлять взаимосвязь химических знаний с понятиями и представлениями других естественно-научных предметов для более осознанного понимания материального единства мира;

сформированность умения проводить расчёты: с использованием понятий «массовая доля вещества в растворе» и «молярная концентрация»; массы вещества или объёма газа по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ; теплового эффекта реакции; значения водородного показателя растворов кислот и щелочей с известной степенью диссоциации; массы (объёма, количества вещества) продукта реакции, если одно из исходных веществ дано в виде раствора с определённой массовой долей растворённого вещества или дано в избытке (имеет примеси); доли выхода продукта реакции; объёмных отношений газов;

сформированность умений: самостоятельно планировать и проводить химический эксперимент (проведение реакций ионного обмена, подтверждение качественного состава неорганических веществ, определение среды растворов веществ с помощью индикаторов, изучение влияния различных факторов на скорость химической реакции, решение экспериментальных задач по темам «Металлы» и «Неметаллы») с соблюдением правил

безопасного обращения с веществами и лабораторным оборудованием, формулировать цель исследования, представлять в различной форме результаты эксперимента, анализировать и оценивать их достоверность;

сформированность умений: соблюдать правила пользования химической посудой и лабораторным оборудованием, обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов, экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья, окружающей природной среды и достижения её устойчивого развития, осознавать опасность токсического действия на живые организмы определённых неорганических веществ, понимая смысл показателя ПДК;

сформированность умений: осуществлять целенаправленный поиск химической информации в различных источниках (научная и учебно-научная литература, средства массовой информации, Интернет и другие), критически анализировать химическую информацию, перерабатывать её и использовать в соответствии с поставленной учебной задачей.

3. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

11 КЛАСС

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

Теоретические основы химии.

Атом. Состав атомных ядер. Химический элемент. Изотопы. Строение электронных оболочек атомов, квантовые числа. Энергетические уровни и подуровни. Атомные орбитали. Классификация химических элементов (s-, p-, d-, f-элементы). Распределение электронов по атомным орбиталям. Электронные конфигурации атомов элементов первого—четвёртого периодов в основном и возбуждённом состоянии, электронные конфигурации ионов. Электроотрицательность.

Периодический закон и Периодическая система химических элементов Д.И. Менделеева. Связь периодического закона и Периодической системы химических элементов с современной теорией строения атомов. Закономерности изменения свойств химических элементов и образуемых ими простых и сложных веществ по группам и периодам. Значение периодического закона Д.И. Менделеева.

Химическая связь. Виды химической связи: ковалентная, ионная, металлическая. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Энергия и длина связи. Полярность, направленность и насыщаемость ковалентной связи. Кратные связи. Водородная связь. Межмолекулярные взаимодействия.

Валентность и валентные возможности атомов. Связь электронной структуры молекул с их геометрическим строением (на примере соединений элементов второго периода).

Представление о комплексных соединениях. Состав комплексного иона: комплексообразователь, лиганды. Значение комплексных соединений. Понятие о координационной химии.

Вещества молекулярного и немолекулярного строения. Типы кристаллических решёток (структур) и свойства веществ.

Понятие о дисперсных системах. Истинные растворы. Представление о коллоидных растворах. Способы выражения концентрации растворов: массовая доля вещества в растворе, молярная концентрация. Насыщенные и ненасыщенные растворы, растворимость. Кристаллогидраты.

Классификация и номенклатура неорганических веществ. Тривиальные названия отдельных представителей неорганических веществ.

Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ; закон сохранения и превращения энергии при химических реакциях. Тепловые эффекты химических реакций. Термохимические уравнения.

Скорость химической реакции, её зависимость от различных факторов. Гомогенные и гетерогенные реакции. Катализ и катализаторы.

Обратимые и необратимые реакции. Химическое равновесие. Константа химического равновесия. Факторы, влияющие на положение химического равновесия: температура, давление и концентрации веществ, участвующих в реакции. Принцип Ле Шателье.

Электролитическая диссоциация. Сильные и слабые электролиты. Степень диссоциации. Среда водных растворов: кислотная, нейтральная, щелочная. Водородный показатель (рН) раствора. Гидролиз солей. Реакции ионного обмена.

Окислительно-восстановительные реакции. Степень окисления. Окислитель и восстановитель. Процессы окисления и восстановления. Важнейшие окислители и восстановители. Метод электронного баланса. Электролиз растворов и расплавов веществ.

Экспериментальные методы изучения веществ и их превращений: разложение пероксида водорода в присутствии катализатора, модели кристаллических решёток, проведение реакций ионного обмена, определение среды растворов с помощью индикаторов, изучение влияния различных факторов на скорость химической реакции и положение химического равновесия.

Неорганическая химия.

Положение неметаллов в Периодической системе химических элементов Д.И. Менделеева и особенности строения их атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода).

Водород. Получение, физические и химические свойства: реакции с металлами и неметаллами, восстановительные свойства. Гидриды. Топливные элементы.

Галогены. Нахождение в природе, способы получения, физические и химические свойства. Галогеноводороды. Важнейшие кислородсодержащие соединения галогенов. Лабораторные и промышленные способы получения галогенов. Применение галогенов и их соединений.

Кислород, озон. Лабораторные и промышленные способы получения кислорода. Физические и химические свойства и применение кислорода и озона. Оксиды и пероксиды.

Сера. Нахождение в природе, способы получения, физические и химические свойства. Сероводород, сульфиды. Оксид серы(IV), оксид серы(VI). Сернистая и серная кислоты и их соли. Особенности свойств серной кислоты. Применение серы и её соединений.

Азот. Нахождение в природе, способы получения, физические и химические свойства. Аммиак, нитриды. Оксиды азота. Азотистая и азотная кислоты и их соли. Особенности свойств азотной кислоты. Применение азота и его соединений. Азотные удобрения.

Фосфор. Нахождение в природе, способы получения, физические и химические свойства. Фосфиды и фосфин. Оксиды фосфора, фосфорная кислота и её соли. Применение фосфора и его соединений. Фосфорные удобрения.

Углерод, нахождение в природе. Аллотропные модификации. Физические и химические свойства простых веществ, образованных углеродом. Оксид углерода(II), оксид углерода(IV), угольная кислота и её соли. Активированный уголь, адсорбция. Фуллерены, графен, углеродные нанотрубки. Применение простых веществ, образованных углеродом, и его соединений.

Кремний. Нахождение в природе, способы получения, физические и химические свойства. Оксид кремния(IV), кремниевая кислота, силикаты. Применение кремния и его соединений. Стекло, его получение, виды стекла.

Положение металлов в Периодической системе химических элементов. Особенности строения электронных оболочек атомов металлов. Общие физические свойства металлов. Применение металлов в быту и технике. Сплавы металлов.

Электрохимический ряд напряжений металлов. Общие способы получения металлов: гидрометаллургия, пирометаллургия, электрометаллургия. Понятие о коррозии металлов. Способы защиты от коррозии.

Общая характеристика металлов IA-группы Периодической системы химических элементов. Натрий и калий: получение, физические и химические свойства, применение простых веществ и их соединений.

Общая характеристика металлов IIA-группы Периодической системы химических элементов. Магний и кальций: получение, физические и химические свойства, применение простых веществ и их соединений. Жёсткость воды и способы её устранения.

Алюминий: получение, физические и химические свойства, применение простого вещества и его соединений. Амфотерные свойства оксида и гидроксида алюминия, гидроксокомплексы алюминия.

Общая характеристика металлов побочных подгрупп (Б-групп) Периодической системы химических элементов.

Физические и химические свойства хрома и его соединений. Оксиды и гидроксиды хрома(II), хрома(III) и хрома(VI). Хроматы и дихроматы, их окислительные свойства. Получение и применение хрома.

Физические и химические свойства марганца и его соединений. Важнейшие соединения марганца(II), марганца(IV), марганца(VI) и марганца(VII). Перманганат калия, его окислительные свойства.

Физические и химические свойства железа и его соединений. Оксиды, гидроксиды и соли железа(II) и железа(III). Получение и применение железа и его сплавов.

Физические и химические свойства меди и её соединений. Получение и применение меди и её соединений.

Цинк: получение, физические и химические свойства. Амфотерные свойства оксида и гидроксида цинка, гидроксокомплексы цинка. Применение цинка и его соединений.

Экспериментальные методы изучения веществ и их превращений: изучение образцов неметаллов, горение серы, фосфора, железа, магния в кислороде, изучение коллекции «Металлы и сплавы», взаимодействие щелочных и щелочноземельных металлов с водой (возможно использование видеоматериалов), взаимодействие цинка и железа с растворами кислот и щелочей, качественные реакции на неорганические анионы, катион водорода и катионы металлов, взаимодействие гидроксидов алюминия и цинка с растворами кислот и щелочей, решение экспериментальных задач по темам «Галогены», «Сера и её соединения», «Азот и фосфор и их соединения», «Металлы главных подгрупп», «Металлы побочных подгрупп».

Химия и жизнь.

Роль химии в обеспечении устойчивого развития человечества. Понятие о научных методах познания и методологии научного исследования. Научные принципы организации химического производства. Промышленные способы получения важнейших веществ (на примере производства аммиака, серной кислоты, метанола). Промышленные способы получения металлов и сплавов. Химическое загрязнение окружающей среды и его последствия. Роль химии в обеспечении энергетической безопасности.

Химия и здоровье человека. Лекарственные средства. Правила использования лекарственных препаратов. Роль химии в развитии медицины.

Химия пищи: основные компоненты, пищевые добавки. Роль химии в обеспечении пищевой безопасности.

Косметические и парфюмерные средства. Бытовая химия. Правила безопасного использования препаратов бытовой химии в повседневной жизни.

Химия в строительстве: важнейшие строительные материалы (цемент, бетон).

Химия в сельском хозяйстве. Органические и минеральные удобрения.

Современные конструкционные материалы, краски, стекло, керамика. Материалы для электроники. Нанотехнологии.

Расчётные задачи.

Расчёты: массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, массы (объёма, количества вещества) продуктов реакции, если одно из веществ имеет примеси, массы (объёма, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определённой массовой долей растворённого вещества, массовой доли и молярной

концентрации вещества в растворе, доли выхода продукта реакции от теоретически возможного.

Межпредметные связи.

Реализация межпредметных связей при изучении общей и неорганической химии в 11 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, принятых в отдельных предметах естественно-научного цикла.

Общие естественно-научные понятия: явление, научный факт, гипотеза, теория, закон, анализ, синтез, классификация, периодичность, наблюдение, измерение, эксперимент, модель, моделирование.

Физика: материя, микромир, макромир, атом, электрон, протон, нейтрон, ион, изотопы, радиоактивность, молекула, энергетический уровень, вещество, тело, объём, агрегатное состояние вещества, идеальный газ, физические величины, единицы измерения, скорость, энергия, масса.

Биология: клетка, организм, экосистема, биосфера, метаболизм, макро- и микроэлементы, белки, жиры, углеводы, нуклеиновые кислоты, ферменты, гормоны, круговорот веществ и поток энергии в экосистемах.

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: химическая промышленность, металлургия, строительные материалы, сельскохозяйственное производство, пищевая промышленность, фармацевтическая промышленность, производство косметических препаратов, производство конструкционных материалов, электронная промышленность, нанотехнологии.

4. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ ОБУЧАЮЩИХСЯ И ПЛАНИРУЕМЫМИ ОБРАЗОВАТЕЛЬНЫМИ РЕЗУЛЬТАТАМИ ИЗУЧЕНИЯ РАЗДЕЛОВ

11 КЛАСС

	Наименование	1	T	
Nº ⊓/п	разделов и тем учебного предмета	Количество часов	Программное содержание	Основные виды деятельности обучающихся
Раздо	ел 1. Теоретические основы Строение атома. Периодический закон и Периодическая система химических элементов Д.И. Менделеева	химии 9	Атом. Состав атомных ядер. Химический элемент. Изотопы. Корпускулярноволновой дуализм, двойственная природа электрона. Строение электронных оболочек атомов, квантовые числа. Энергетические уровни и подуровни. Атомные орбитали. Классификация химических элементов (s-, p-, d-, f-элементы). Распределение электронов по атомным орбиталям; принцип минимума энергии, принцип Паули, правило Хунда. Электронные конфигурации атомов элементов I — IV периодов в основном и возбужденном состоянии, электронные конфигурации ионов. Понятие об энергии ионизации, энергии сродства к электрону. Электроотрицательность. Периодический закон и Периодическая	Раскрывать смысл изучаемых понятий (выделять их характерные признаки) и применять эти понятия при описании состава и строения веществ, для объяснения отдельных фактов и явлений. Раскрывать смысл периодического закона Д. И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции. Характеризовать электронное строение атомов (в основном и возбуждённом состоянии) и ионов химических элементов 1 — 4 периодов и их валентные возможности, используя понятия <i>s-</i> , <i>p-</i> , <i>d-</i> электронные орбитали, энергетические уровни. Объяснять закономерности

		система химических элементов Д.И.	изменения свойств химических
		Менделеева. Связь Периодического	элементов и их соединений
		закона и	по периодам и группам
		Периодической системы химических	Периодам и группам
		элементов с современной теорией строения	И. Менделеева
		атомов. Закономерности изменения свойств	71. Wengezeesa
		химических элементов и образуемых ими	
		простых и сложных веществ по группам и	
		периодам. Значение периодического закона	
		Д.И. Менделеева. Экспериментальные	
		методы изучения веществ и их превращений:	
		Демонстрации:	
		<u>а демонеграции.</u>	
		Виды таблиц «Периодическая	
		система химических элементов Д.И.	
		Менделеева»	
		Химическая связь. Виды химической связи:	
		ковалентная, ионная, металлическая.	Раскрывать смысл изучаемых понятий
		Механизмы образования ковалентной	(выделять их характерные признаки)
		связи: обменный и донорно-акцепторный.	применять эти понятия при описании
		Энергия и длина связи. Полярность,	состава и строения веществ, для
		направленность и насыщаемость	объяснения отдельных фактов и
		ковалентной связи. Кратные связи.	явлений. Определять виды химическо
		Водородная связь. Межмолекулярные	связи (ковалентной, ионной,
1 2	CTDOULING BOULGETBS	взаимодействия.	металлической, водородной)
1.2	Строение вещества.		
	Многообразие веществ		в соединениях, тип

Валентность и валентные возможности атомов. *Гибридизация атомных орбиталей*. Связь электронной структуры молекул с их геометрическим строением

(на примере соединений элементов второго периода).

Представление о комплексных соединених. Состав комплексного иона: комплексообразователь, лиганды. Координационное число. Номенклатура комплексных соединений. Значение комплексных соединений. Понятие

о координационной химии. Вещества молекулярного и немолекулярного строения. Типы кристаллических решеток (структур) и свойства веществ. Понятие о дисперсных системах.

Истинные растворы. Представление о коллоидных растворах. Способы выражения концентрации растворов: массовая доля вещества в растворе,

молярная концентрация. Насыщенные и ненасыщенные растворы, растворимость. Кристаллогидраты. кристаллической решётки конкретного вещества. Объяснять механизм образования ковалентной связи (обменный и донорно-акцепторный).

Определять валентность и степень окисления химических элементов в соединениях различного состава. Объяснять зависимость свойств веществ от вида химической связи и типа кристаллической решётки. Проводить вычисления

с использованием понятия «массовая доля вещества в растворе»

		Классификация и номенклатура неорганических веществ. Экспериментальные методы изучения веществ и их превращений: Демонстрации: модели кристаллических решеток. Расчётные задачи: с использованием понятий «массовая доля растворенного вещества», «молярная концентация»	
1.3 Химические реакции	19	Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ; закон сохранения и превращения энергии при химических реакциях. Тепловые эффекты химических реакций. Термохимические уравнения. Скорость химической реакции, ее зависимость от различных факторов. Гомогенные и гетерогенные реакции. Катализ и катализаторы. Обратимые и необратимые реакции. Химическое равновесие. Константа химического равновесия. Факторы, влияющие на положение химического	Раскрывать смысл изучаемых понятий (выделять их характерные признаки) и применять эти понятия при описании состава и строения веществ, для объяснения отдельных фактов и явлений. Классифицировать химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов, обратимости, участию катализатора и т.п.); самостоятельно выбирать основания и критерии

равновесия: температура, давление

для классификации химических

и концентрации веществ, участвующих в реакции. Принцип Ле Шателье. Электролитическая диссоциация. Сильные и слабые электролиты. Степень диссоциации. Ионное произведение воды. Среда водных растворов: кислотная, нейтральная, щелочная. Водородный показатель (рН) раствора. Гидролиз солей. Реакции ионного обмена. Окислительно-восстановительные реакции. Степень окисления. Окислитель и восстановитель. Процессы окисления и восстановления. Важнейшие окислители и восстановители. Метод электронного баланса. Электролиз растворов и расплавов веществ. Экспериментальные методы изучения веществ и их

превращений:

- Демонстрации:
- разложение пероксида водорода в присутствии катализатора.
- 🛚 Лабораторные опыты:

проведение реакций ионного обмена; реакций.

Объяснять закономерности протекания химических реакций с учётом их энергетических

характеристик, характер изменения скорости химической реакции

в зависимости от различных факторов, а также характер смещения химического равновесия под влиянием внешних воздействий (принцип

Ле Шателье). Раскрывать сущность:

окислительно-восстановительных реакций посредством составления электронного баланса этих реакций; реакций ионного обмена путем составления их полных и сокращённых ионных уравнений; реакций гидролиза, реакций комплексообразования

(на примере гидроксокомплексов цинка и алюминия).

Проводить и описывать химический эксперимент: определение среды водных растворов веществ; проведение

🛽 определение среды растворов веществ	реакций ионного обмена; изучение
с помощью универсального индикатора.	влияния различных факторов
🛽 Практические работы:	на скорость реакций и положение
№ 1. Влияние различных факторов на	химического равновесия. Следовать
скорость химической реакции; № 2.	правилам пользования химической
Влияние различных факторов	посудой и лабораторным оборудованием. Представлять
на положение химического равновесия; № 3.	результаты химического эксперимент
Химические реакции в растворах электролитов.	в форме записи уравнений соответствующих реакций
🛽 Расчётные задачи:	и делать выводы на их основе.
🛽 расчёты массы вещества	Проводить вычисления:
или объема газов по известному	с использованием понятия
количеству вещества, массе	«массовая доля вещества
или объему одного из участвующих в	в растворе», а также по уравнениям
реакции веществ;	химических реакций, в том числе
Вычисление массовой доли и	термохимические расчёты
молярной концентрации вещества в	
растворе;	
🛽 вычисление массы (объема,	
количества вещества) продукта реакции,	
если одно из веществ дано в виде	
раствора с определенной массовой долей	

2.1	Неметаллы	31	Положение неметаллов	Раскрывать смысл изучаемых понятий
			в Периодической системе химических элементов Д.И. Менделеева и особенности строения их атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода). Водород. Получение, физические и химические свойства (реакции	(выделять их характерные признаки) и применять эти понятия при описании состава и строения веществ, для объяснения отдельных фактов и явлений. Объяснять общие закономерности в изменении свойств неметаллов и их соединений с учётом строения их атомов и положения
			с металлами и неметаллами, восстановление оксидов и солей). Гидриды. Топливные элементы. Галогены. Нахождение в природе, способы получения физические и химические свойства. Галогеноводороды. Важнейшие кислородсодержащие соединения галогенов. Лабораторные и промышленные способы получения галогенов. Применение галогенов и их соединений. Кислород, озон. Лабораторные и промышленные способы получения кислорода. Физические и химические свойства кислорода и озона; их применение. Оксиды и пероксиды.	в Периодической системе химических элементов Д. И. Менделеева. Характеризовать (описывать) общие химические свойства неметаллов, их важнейших соединений, подтверждая это описание примерами уравнений соответствующих химических реакций. Составлять уравнения окислительновосстановительных реакций и реакций ионного обмена и раскрывать их сущность с помощью электронного баланса и ионных уравнений.

Сера. Нахождение в природе, способы получения, физические и химические свойства. Сероводород, сульфиды. Оксиды серы(IV) и (VI). Сернистая и серная кислоты и их соли. Особенности свойств серной кислоты. Применение серы и её соединений. Азот. Нахождение в природе, способы получения, физические и химические свойства. Аммиак, нитриды. Оксиды азота. Азотистая и азотная кислоты и их соли. Особенности свойств азотной кислоты. Применение азота и его соединений. Азотные удобрения. Фосфор. Нахождение в природе, способы получения, физические и химические свойства. Фосфиды и фосфин. Оксиды фосфора, ортофосфорная кислота и ее соли. Метафосфорная и пирофосфорная кислоты, фосфористая и фосфорноватистая кислоты. Применение фосфора и его соединений. Фосфорные удобрения. Углерод. Нахождение в природе, способы получения, физические и химические свойства. Оксиды

Характеризовать влияние неметаллов и их соединений

на живые организмы; описывать применение в различных областях практической деятельности человека.

Подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций.

Проводить реакции, подтверждающие качественный состав веществ; распознавать опытным путём анионы, присутствующие в водных растворах.

Наблюдать и описывать демонстрационный эксперимент; самостоятельно планировать, проводить и описывать химический эксперимент (лабораторные опыты и практические работы); представлять результаты химического эксперимента

углерода(II) и (IV), угольная кислота и ее в форме записи уравнений соответствующих реакций и делать соли. Применение углерода и его соединений. выводы на их основе. Кремний. Нахождение в природе, способы Следовать правилам пользования получения, физические и химические химической посудой и лабораторным оборудованием. Проводить свойства. Оксид кремния(IV), кремниевая кислота, силикаты. Применение кремния и вычисления его соединений. Стекло, его получение, по уравнениям химических виды стекол. реакций. Экспериментальные методы изучения Самостоятельно планировать и веществ и их превращений: 🛚 Демонстрации: осуществлять свою познавательную деятельность; принимать активное 🛚 образцы неметаллов; участие в групповой учебной деятельности горение серы, фосфора, железа, магния в кислороде. 🛮 Лабораторные опыты: 🗓 качественные реакции на неорганические ионы и катион водорода; 🛾 получение и собирание газов. 🗈 Практические работы: № 4. Решение экспериментальных задач по теме «Галогены»;

№ 5. Решение экспериментальных задач по теме «Сера и ее соединения».

№ 6. Решение экспериментальных задач по теме «Азот и фосфор и их соединения». Расчётные задачи: Вычисление массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ; Вычисление массы (объема, количества вещества) продуктов реакции, если одно из веществ имеет примеси; Вычисление массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества; Вычисление выхода продукта реакции от теоретически возможного 2.2 Положение металлов в Периодической	Раскрывать смысл изучаемых понятий
системе химических элементов. Особенности строения электронных оболочек атомов металлов. Распространение химических элементовметаллов в земной коре.	(выделять их характерные признаки) и применять эти понятия при описании состава и строения неорганических веществ, для объяснения отдельных фактов

Общие физические свойства металлов.
Применение металлов в быту, природе и технике. Сплавы металлов.
Электрохимический ряд напряжений металлов. Общие способы получения металлов: гидрометаллургия, пирометаллургия, электрометаллургия.
Понятие о коррозии металлов. Способы защиты от коррозии.

Общая характеристика металлов

IA-группы Периодической системы химических элементов. Натрий и калий: получение, физические и химические свойства, применение простых веществ и их соединений. Общая характеристика металлов

IIA-группы Периодической системы химических элементов. Магний и кальций: получение, физические и химические свойства, применение простых веществ и их соединений. Жесткость воды и способы ее устранения.

Алюминий: получение, физические и химические свойства, применение простого вещества и его соединений. Амфотерные свойства оксида и

и явлений.

Объяснять общие закономерности в изменении свойств элементов — металлов и их соединений с учётом строения их атомов и положения

в Периодической системе химических элементов

Д. И. Менделеева. Характеризовать (описывать) общие химические свойства металлов, их важнейших соединений, подтверждая это описание примерами уравнений соответствующих химических реакций; применение металлов в различных областях практической деятельности человека, а также использование их для создания современных материалов и технологий. Описывать способы защиты металлов от коррозии. Раскрывать сущность

окислительно-восстановительных реакций посредством составления электронного баланса этих реакций.

гидроксида алюминия, гидроксокомплексы алюминия. Общая характеристика металлов побочных подгрупп (Б-групп) Периодической системы химических элементов.

Физические и химические свойства хрома и его соединений. Оксиды и гидроксиды хрома(II), (III) и (VI). Хроматы и дихроматы, их окислительные свойства. Получение и применение хрома.

Физические и химические свойства марганца и его соединений. Основные соединения марганца (II), (IV), (VI) и (VII). Перманганат калия, его окислительные свойства.

Физические и химические свойства железа и его соединений. Оксиды, гидроксиды и соли железа(II) и (III). Получение и применение железа и его сплавов.

Медь: получение, физические и химические свойства, применение простого вещества и его соединений. Цинк: получение, физические и химические свойства, применение Проводить реакции, подтверждающие характерные свойства изучаемых веществ, распознавать опытным путём ионы металлов, присутствующие

в водных растворах. Проводить и описывать химический эксперимент (лабораторные опыты и практические работы); представлять результаты химического эксперимента в форме записи уравнений

соответствующих реакций и делать выводы на их основе.

Следовать правилам пользования химической посудой и лабораторным оборудованием. Проводить вычисления

по уравнениям химических реакций.

Самостоятельно планировать и осуществлять свою познавательную деятельность; принимать активное участие

в групповой учебной деятельности

простого вещества и его соединений. Амфотерные свойства оксида и гидроксида цинка, гидроксокомплексы цинка. Экспериментальные методы изучения веществ и их превращений: 🛚 Демонстрации: З коллекция «Металлы и сплавы»;
 З гаранта взаимодействие щелочных и щелочноземельных металлов с водой (возможно использование видеоматериалов). 🛮 Лабораторные опыты: 🛾 взаимодействие щелочных и щелочноземельных металлов с водой (возможно использование видеоматериалов); Взаимодействие гидроксидов алюминия и цинка с растворами кислот и щелочей; качественные реакции на катионы металлов. 🛚 Практические работы: № 7. Решение экспериментальных задач по теме «Металлы главных подгрупп»;

	№ 8. Решение экспериментальных задач
	по теме «Металлы побочных подгрупп».
	? Расчётные задачи:
	🛽 вычисление массы (объема, количества
	вещества) продукта реакции, если одно
	из веществ дано в виде раствора с
	определенной массовой долей
	растворенного вещества, или имеет
	примеси;
	🛽 вычисление массы (объема, количества
	вещества) продукта реакции, если одно
	из веществ дано в виде раствора с
	определенной массовой долей
	растворенного вещества;
	🛽 вычисление выхода продукта
	вычисление выхода продукта
	Раздел 3. Химия и жизнь
Итого по разделу	
,	

р т теоретически возможного 54 е а к ц и и и о о

9

3.1 Методы познания в химии.

Химия и жизнь

Роль химии в обеспечении устойчивого развития человечества. Понятие о научных методах познания и методологии научного исследования. Научные принципы организации химического производства. Промышленные способы получения

Раскрывать роль химии в решении энергетических, сырьевых и экологических проблем человечества, описывать основные направления развития химической науки и технологии.

Применять правила безопасного

важнейших веществ (на примере производства аммиака, серной кислоты, метанола). Промышленные способы получения металлов и сплавов. Химическое загрязнение окружающей среды и его последствия. Проблема переработки отходов и побочных продуктов. Роль химии

в обеспечении энергетической безопасности. *Принципы «Зеленой химии»*.

Химия и здоровье человека. Лекарственные средства. Правила использования лекарственных препаратов. Роль химии в развитии медицины.

Химия пищи. Основные компоненты пищи. Пищевые добавки. Роль химии в обеспечении пищевой безопасности. Косметические и парфюмерные средства. Бытовая химия. Правила безопасного использования препаратов бытовой химии в повседневной жизни. Химия в строительстве. Важнейшие строительные материалы (цемент, бетон). Производство строительных материалов.

обращения с веществами, используемыми в повседневной жизни; а также правила безопасного поведения в целях сбережения здоровья и окружающей природной среды; понимать опасность воздействия на живые организмы определенных веществ, смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия. Анализировать и критически оценивать информацию, связанную с химическими процессами и их влиянием на состояние окружающей среды.

Использовать полученные знания и представления о сферах деятельности, связанных с наукой и современными технологиями, как основу для ориентации

в выборе своей будущей профессиональной деятельности. Использовать системные химические знания для объяснения и прогнозирования явлений,

	Химия в сельском хозяйстве. Органические и
Итого по разделу ОБЩЕЕ КОЛИЧЕСТВО	минеральные удобрения.
часов по программе	Неорганические материалы
	(конструкционные материалы, краски, стекло, керамика).

Материалы

для электроники. Нанотехнологии

имеющих естественнонаучную природу, прогнозировать, анализировать и оценивать

с позиций экологической безопасности последствия бытовой и производственной деятельности человека, связанной

с переработкой веществ; использовать полученные знания для принятия грамотных решений проблем в ситуациях, связанных с химией.

Принимать участие в обсуждении проблем химической и экологической направленности, высказывать собственную позицию по проблеме и предлагать возможные пути её решения

5.СПОСОБЫ ОЦЕНКИ ДОСТИЖЕНИЯ УЧАЩИМИСЯ ПОАНИРУЕМЫХ РЕЗУЛЬТАТОВ

1. Оценка устного ответа.

Оценка "5" ставится, если обучающийся:

- 1. показывает глубокое и полное знание и понимание всего объёма программного материала; полное понимание сущности рассматриваемых понятий, явлений и закономерностей, теорий, взаимосвязей;
- 2. умеет составить полный и правильный ответ на основе изученного материала; выделять главные положения, самостоятельно подтверждать ответ конкретными примерами, фактами; самостоятельно и аргументировано делать анализ, обобщения, выводы. Устанавливать межпредметные (на основе ранее приобретенных знаний) и внутрипредметные связи, творчески применять полученные знания в незнакомой ситуации. Последовательно, чётко, связно, обоснованно и безошибочно излагать учебный материал; давать ответ в логической последовательности с использованием принятой терминологии; делать собственные выводы; формулировать точное определение и истолкование основных понятий, законов, теорий; при ответе не повторять дословно текст учебника; излагать материал литературным языком; правильно и обстоятельно отвечать на дополнительные вопросы учителя. Самостоятельно и рационально использовать наглядные пособия, справочные материалы, учебник, дополнительную литературу, первоисточники; применять систему условных обозначений при ведении записей, сопровождающих ответ; использование для доказательства выводов из наблюдений и опытов:
- 3. самостоятельно, уверенно и безошибочно применяет полученные знания в решении проблем на творческом уровне; допускает не более одного недочёта, который легко исправляет по требованию учителя; имеет необходимые навыки работы с приборами, чертежами, схемами и графиками, сопутствующими ответу; записи, сопровождающие ответ, соответствуют требованиям.

Оценка "3" ставится, если обучающийся:

1.показывает знания всего изученного программного материала. Даёт полный и правильный ответ на основе изученных теорий; незначительные ошибки и недочёты при воспроизведении изученного материала, определения понятий дал неполные, небольшие неточности при использовании научных терминов или в выводах и обобщениях из наблюдений и опытов; материал излагает в определенной логической последовательности, при этом допускает одну негрубую ошибку или не более двух недочетов и может их исправить самостоятельно при требовании или при небольшой помощи преподавателя; в основном усвоил учебный материал; подтверждает ответ конкретными примерами; правильно отвечает на дополнительные вопросы учителя;

- 2. умеет самостоятельно выделять главные положения в изученном материале; на основании фактов и примеров обобщать, делать выводы, устанавливать внутрипредметные связи. Применять полученные знания на практике в видоизменённой ситуации, соблюдать основные правила культуры устной речи и сопровождающей письменной, использовать научные термины;
- 3. не обладает достаточным навыком работы со справочной литературой, учебником, первоисточниками (правильно ориентируется, но работает медленно). Допускает негрубые нарушения правил оформления письменных работ.

Оценка "3" ставится, если обучающийся:

- 1. усвоил основное содержание учебного материала, имеет пробелы в усвоении материала не препятствующие дальнейшему усвоению программного материала;
- 2. материал излагает несистематизированно, фрагментарно, не всегда последовательно;
- 3. показывает недостаточную сформированность отдельных знаний и умений; выводы и обобщения аргументирует слабо, допускает в них ошибки;
- 4. допустил ошибки и неточности в использовании научной терминологии, определения понятий дал недостаточно четкие;
- 5. не использовал в качестве доказательства выводы и обобщения из наблюдений, фактов, опытов или допустил ошибки при их изложении;
- 6. испытывает затруднения в применении знаний, необходимых для решения задач различных типов, при объяснении конкретных явлений на основе теорий и законов, или в подтверждении конкретных примеров практического применения теорий;
- 7. отвечает неполно на вопросы учителя (упуская и основное), или воспроизводит содержание текста учебника, но недостаточно понимает отдельные положения, имеющие важное значение в этом тексте;
- 8. обнаруживает недостаточное понимание отдельных положений при воспроизведении текста учебника (записей, первоисточников) или отвечает неполно на вопросы учителя, допуская одну-две грубые ошибки.

Оценка "2" ставится, если обучающийся:

- 1. не усвоил и не раскрыл основное содержание материала;
- 2. не делает выводов и обобщений.
- 3. не знает и не понимает значительную или основную часть программного материала в пределах поставленных вопросов;
- 4. или имеет слабо сформированные и неполные знания и не умеет применять их к решению конкретных вопросов и задач по образцу;
- 5. или при ответе (на один вопрос) допускает более двух грубых ошибок, которые не может исправить даже при помощи учителя.

2. Оценка экспериментальных умений (практических и лабораторных работ)

Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Оценка "5" ставится, если обучающийся:

- 1. правильно определил цель опыта;
- 2.выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений;
- 3. самостоятельно и рационально выбрал и подготовил для опыта необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью;
- 4. научно грамотно, логично описал наблюдения и сформулировал выводы из опыта. В представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы;
- 5. проявляет организационно-трудовые умения (поддерживает чистоту рабочего места и порядок на столе, экономно использует расходные материалы).
- 6. эксперимент осуществляет по плану с учетом техники безопасности и правил работы с материалами и оборудованием.

Оценка "4" ставится, если обучающийся выполнил требования к оценке "5", но:

- 1. опыт проводил в условиях, не обеспечивающих достаточной точности измерений;
- 2. или было допущено два-три недочета;
- 3. или не более одной негрубой ошибки и одного недочета,
- 4. или эксперимент проведен не полностью;

5. или в описании наблюдений из опыта допустил неточности, выводы сделал неполные.

Оценка "3" ставится, если обучающийся:

- 1. правильно определил цель опыта; работу выполняет правильно не менее чем наполовину, однако объём выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы;
- 2. или подбор оборудования, объектов, материалов, а также работы по началу опыта провел с помощью учителя; или в ходе проведения опыта и измерений были допущены ошибки в описании наблюдений, формулировании выводов;
- 3. опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью; или в отчёте были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т.д.);
- 4. допускает грубую ошибку в ходе эксперимента (в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с материалами и оборудованием), которая исправляется по требованию учителя.

Оценка "2" ставится, если ученик:

- 1. не определил самостоятельно цель опыта; выполнил работу не полностью, не подготовил нужное оборудование и объем выполненной части работы не позволяет сделать правильных выводов;
 - 2. или опыты, измерения, вычисления, наблюдения производились неправильно;
- 3. или в ходе работы и в отчете обнаружились в совокупности все недостатки, отмеченные в требованиях к оценке "3";
- 4. допускает две (и более) грубые ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые не может исправить даже по требованию учителя.

3. Оценка умений решать расчетные задачи

Оценка «5»:

в логическом рассуждении и решении нет ошибок, задача решена рациональным способом:

Оценка «4»:

в логическом рассуждении и решения нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Оценка «3»:

в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Оценка «2»:

- 1. имеется существенные ошибки в логическом рассуждении и в решении;
- 2. отсутствие ответа на задание.

4. Оценка письменных контрольных работ

Оценка «5»:

ответ полный и правильный, возможна несущественная ошибка.

Опенка и4м

ответ неполный или допущено не более двух несущественных ошибок.

Оценка «3»:

работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Опенка «2»:

1.работа выполнена меньше чем наполовину или содержит несколько существенных ошибок;

2. работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

5. Оценка тестовых работ

Тесты, состоящие из пяти вопросов можно использовать после изучения каждого материала (урока). Тест из 10-15 вопросов используется для периодического контроля. Тест из 20-30 вопросов необходимо использовать для итогового контроля.

При оценивании используется следующая шкала:

```
для теста из пяти вопросов:
```

```
нет ошибок — оценка «5»; одна ошибка — оценка «4»; две ошибки — оценка «3»; три ошибки — оценка «2». Для теста из 30 вопросов: 25-30 правильных ответов — оценка «5»; 19-24 правильных ответов — оценка «4»; 13-18 правильных ответов — оценка «3»; меньше 12 правильных ответов — оценка «2».
```

6. Оценка реферата

Реферат оценивается по следующим критериям:

соблюдение требований к его оформлению;

необходимость и достаточность для раскрытия темы приведенной в тексте реферата информации;

умение обучающегося свободно излагать основные идеи, отраженные в реферате; способность обучающегося понять суть задаваемых членами аттестационной комиссии вопросов и сформулировать точные ответы на них.

6. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО И УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

- Химия / Габриелян О.С., Остроумов И.Г., Сладков С.А., Акционерное общество «Издательство «Просвещение»
- Химия, 10 класс/ Габриелян О.С., Общество с ограниченной ответственностью «ДРОФА»; Акционерное общество «Издательство «Просвещение»
- Химия, 11 класс/ Габриелян О.С., Общество с ограниченной ответственностью «ДРОФА»; Акционерное общество «Издательство «Просвещение»

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

- 1. О.С.Габриелян, Г.Г.Лысова «Химия Методическое пособие базовый уровень» М.: Дрофа 2022 год.
- 2. О.С.Габриелян, И.Г.Остроумов, «Общая химия в тестах, задачах, упражнениях. 11 класс» М.: Дрофа, 2023 год.
- 3. О.С.Габриелян, П.Н.Березкин, А.А.Ушакова «Химия 11 класс: Контрольные и проверочные работы к учебнику». М.: Дрофа, 2021 г.
- 4. О.С.Габриелян, Г.Г.Лысова, А.Г.Введенская «Химия 11 класс: Настольная книга для учителя». Часть 1 М.: Дрофа, 2019 год.
- 5. О.С.Габриелян, Г.Г.Лысова, А.Г.Введенская «Химия 11 класс: Настольная книга для учителя». Часть 2 М.: Дрофа, 2022 год.
- 6. О.С.Габриелян, П.В.Решетов, И.Г.Остроумова «Задачи по химии и способы их решения» М.: «Дрофа», 2021год.
- 7. В.Г. Денисова «Химия 11 класс поурочные планы по учебнику О.С.Габриеляна, Г.Г.Лысовой» Волгоград» Учитель 2018год.
- 8. М.А.Рябова, У.Ю.Невская, Р.В.Линко «Тесты по химии 11 класс», М.: Экзамен, 2019г.
- 9. О.С.Габриелян, И.Г.остроумов «Химический эксперимент в школе 11 класс»; М.: Дрофа. 2019 год.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

http://www.chemnet.ru Газета «Химия» и сайт для учителя «Я иду на урок химии» http://him.1september.ru Единая коллекция ЦОР: Предметная коллекция «Химия» http://school-collection.edu.ru/collection/chemistry Естественно-научные эксперименты: Коллекция Российского общеобразовательного портала http://experiment.edu.ru АЛХИМИК: сайт Л.Ю. Аликберовой http://www alhimik.ru Всероссийская олимпиада школьников химии http://chem.rusolymp.ru Органическая химия: электронный учебник для средней школы http://www.chemistry.ssu.samara.ru Основы электронный учебник химии: hemi.nsu.ru Открытый колледж: Химия http://www.chemistry.ru Дистанционная олимпиада по химии: телекоммуникационный образовательный проект